Questions

Q1.

Find the value of the constant $k, 0<k<9$, such that

$$
\int_{k}^{9} \frac{6}{\sqrt{x}} \mathrm{~d} x=20
$$

Q2.

Given that A is constant and

$$
\int_{1}^{4}(3 \sqrt{x}+A) \mathrm{d} x=2 A^{2}
$$

show that there are exactly two possible values for A.

Q3.

Figure 4
Figure 4 shows a sketch of the curve C with equation

$$
y=5 x^{\frac{3}{2}}-9 x+11, x \geqslant 0
$$

The point P with coordinates $(4,15)$ lies on C.
The line l is the tangent to C at the point P.
The region R, shown shaded in Figure 4, is bounded by the curve C, the line I and the y-axis. Show that the area of R is 24 , making your method clear.
(Solutions based entirely on graphical or numerical methods are not acceptable.)

Q4.

Figure 2
Figure 2 shows a sketch of part of the curve with equation $y=x(x+2)(x-4)$.
The region R_{1} shown shaded in Figure 2 is bounded by the curve and the negative x-axis.
(a) Show that the exact area of R_{1} is $\frac{20}{3}$

The region R_{2} also shown shaded in Figure 2 is bounded by the curve, the positive x-axis and the line with equation $x=b$, where b is a positive constant and $0<\mathrm{b}<4$

Given that the area of R_{1} is equal to the area of R_{2}
(b) verify that b satisfies the equation

$$
\begin{equation*}
(b+2)^{2}\left(3 b^{2}-20 b+20\right)=0 \tag{4}
\end{equation*}
$$

The roots of the equation $3 b^{2}-20 b+20=0$ are 1.225 and 5.442 to 3 decimal places.
The value of b is therefore 1.225 to 3 decimal places.
(c) Explain, with the aid of a diagram, the significance of the root 5.442

Q5.

Given that

$$
\mathrm{f}(x)=2 x+3+\frac{12}{x^{2}}, x>0
$$

show that $\int_{1}^{2 \sqrt{2}} f(x) \mathrm{d} x=16+3 \sqrt{2}$

Q6.
(a) Given that k is a constant, find

$$
\int\left(\frac{4}{x^{3}}+k x\right) d x
$$

simplifying your answer.
(b) Hence find the value of k such that

$$
\begin{equation*}
\int_{0.5}^{2}\left(\frac{4}{x^{3}}+k x\right) \mathrm{d} x=8 \tag{3}
\end{equation*}
$$

Mark Scheme

Q1.

Question	Scheme	Marks	AOs
$\int_{k}^{9} \frac{6}{\sqrt{x}} \mathrm{~d} x=\left[a x^{\frac{1}{2}}\right]_{k}^{9}=20 \Rightarrow 36-12 \sqrt{k}=20$	M1	1.1 b	
	Correct method of solving Eg. $36-12 \sqrt{k}=20 \Rightarrow k=$	dM1	3.1 a
	$\Rightarrow k=\frac{16}{9}$ oe	A1	1.1 b
	(4)		
	(4 marks)		

Notes:

M1: For setting $\left[a x^{\frac{1}{2}}\right]_{k}^{9}=20$
A1: A correct equation involving p Eg. $36-12 \sqrt{k}=20$
dM1: For a whole strategy to find k. In the scheme it is awarded for setting $\left[a x^{\frac{1}{2}}\right]_{k}^{9}=20$, using both limits and proceeding using correct index work to find k. It cannot be scored if $k^{\frac{1}{2}}<0$
A1: $k=\frac{16}{9}$

Q2.

Question		scheme	Marks	AOS
	$\int\left(3 x^{0.5}+A\right) \mathrm{d} x=2 x^{1.5}+A x(+c)$		$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	$\begin{aligned} & 3.1 \mathrm{a} \\ & 1.1 \mathrm{~b} \end{aligned}$
	Uses limits and sets $=2 A^{2} \Rightarrow(2 \times 8+4 A)-(2 \times 1+A)=2 A^{2}$		M1	1.1b
	Sets up quadratic and attempts to solve	Sets up quadratic and attempts $b^{2}-4 a c$	M1	1.1b
	$\Rightarrow A=-2, \frac{7}{2}$ and states that there are two roots	States $b^{2}-4 a c=121>0$ and hence there are two roots	A1	2.4
(5 marks)				
Notes:				
M1: Integrates the given function and achieves an answer of the form $k x^{1.5}+A x(+c)$ where k is a non- zero constant				
A1: Correct answer but may not be simplified				
M1: Substitutes in limits and subtracts. This can only be scored if $\int A \mathrm{~d} x=A x$ and not $\frac{A^{2}}{2}$				
M1: Sets up quadratic equation in A and either attempts to solve or attempts $b^{2}-4 a c$ A1: Either $A=-2, \frac{7}{2}$ and states that there are two roots				

Q3.

Question	Scheme	Marks	AOS
	$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{15}{2} x^{\frac{1}{2}}-9$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	$\begin{aligned} & 3.1 \mathrm{a} \\ & 1.1 \mathrm{~b} \end{aligned}$
	Substitutes $x=4 \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=6$	M1	2.1
	Uses (4,15) and gradient $\Rightarrow y-15=6(x-4)$	M1	2.1
	Equation of l is $y=6 x-9$	A1	1.1b
	Area $R=\int_{0}^{4}\left(5 x^{\frac{3}{2}}-9 x+11\right)-(6 x-9) \mathrm{d} x$	M1	3.1a
	$=\left[2 x^{\frac{5}{2}}-\frac{15}{2} x^{2}+20 x(+c)\right]_{0}^{4}$	A1	1.1b
	Uses both limits of 4 and 0 $\left[2 x^{\frac{5}{2}}-\frac{15}{2} x^{2}+20 x\right]_{0}^{4}=2 \times 4^{\frac{5}{2}}-\frac{15}{2} \times 4^{2}+20 \times 4-0$	M1	2.1
	Area of $R=24 *$	A1*	1.1b
	Correct notation with good explanations	A1	2.5
		(10)	
(10 marks)			

Notes:

M1: Differentiates $5 x^{\frac{3}{2}}-9 x+11$ to a form $A x^{\frac{1}{2}}+B$
A1: $\quad \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{15}{2} x^{\frac{1}{2}}-9$ but may not be simplified
M1: Substitutes $x=4$ in their $\frac{d y}{d x}$ to find the gradient of the tangent
M1: Uses their gradient and the point $(4,15)$ to find the equation of the tangent
A1: Equation of l is $y=6 x-9$
M1: Uses Area $R=\int_{0}^{4}\left(5 x^{\frac{3}{2}}-9 x+11\right)-(6 x-9) \mathrm{d} x$ following through on their $y=6 x-9$
Look for a form $A x^{\frac{5}{2}}+B x^{2}+C x$
A1: $\quad=\left[2 x^{\frac{5}{2}}-\frac{15}{2} x^{2}+20 x(+c)\right]_{0}^{4}$ This must be correct but may not be simplified
M1: Substitutes in both limits and subtracts
A1*: Correct area for $R=24$
A1: Uses correct notation and produces a well explained and accurate solution. Look for

- Correct notation used consistently and accurately for both differentiation and integration
- Correct explanations in producing the equation of l. See scheme.
- Correct explanation in finding the area of R. In way 2 a diagram may be used.

Alternative method for the area using area under curve and triangles. (Way 2)
M1: Area under curve $=\int_{0}^{4}\left(5 x^{\frac{3}{2}}-9 x+11\right)=\left[A x^{\frac{5}{2}}+B x^{2}+C x\right]_{0}^{4}$
A1: $=\left[2 x^{\frac{5}{2}}-\frac{9}{2} x^{2}+11 x\right]_{0}^{4}=36$
M1: This requires a full method with all triangles found using a correct method
Look for Area $R=$ their $36-\frac{1}{2} \times 15 \times\left(4-\right.$ their $\left.\frac{3}{2}\right)+\frac{1}{2} \times$ their $9 \times$ their $\frac{3}{2}$

Q4.

Part	Working or answer an examiner might expect to see	Mark	Notes
(a)	$y=x(x+2)(x-4)=x^{3}-2 x^{2}-8 x$	B1	This mark is given for expanding brackets as a first step to a solution
	$\int_{-2}^{0} x^{3}-2 x^{2}-8 x d x$	M1	This mark is given for a method to find the exact are of R_{1}
	$=\left[\frac{1}{4} x^{4}-\frac{2}{3} x^{3}-4 x^{2}\right]_{-2}^{0}$	M1	This mark is given for a method to evaluate the integral
	$=0-\left(4-\frac{-16}{3}-16\right)=\frac{20}{3}$	A1	This mark is given for a full method to show the exact value of R_{1}
(b)	$\frac{1}{4} b^{4}-\frac{2}{3} b^{3}-4 b^{2}=-\frac{20}{3}$	M1	This mark is given for deducing the area of $R_{2}=-\frac{20}{3}$
	$3 b^{4}-8 b^{3}-48 b^{2}+80=0$	A1	This mark is given for rearranging the equation to a quartic
	$\begin{aligned} & (b+2)^{2}\left(3 b^{2}-20 b+20\right) \\ & =\left(b^{2}+4 b+4\right)\left(3 b^{2}-20 b+20\right) \end{aligned}$	M1	This mark is given for expanding the equation given
	$=3 b^{4}-8 b^{3}-48 b^{2}+80=0$ The two equations are the same, so verified	A1	This mark is for showing, and stating, that the equations are the same

| (c) | B1 | This mark is given for a sketch of the
 curve with $b=5.442$ shown |
| :--- | :--- | :--- | :--- | :--- |

Q5.

Question	Scheme	Marks	AOs
	$\mathrm{f}(x)=2 x+3+12 x^{-2}$	B1	1.1b
	Attempts to integrate	M1	1.1a
	$\int\left(+2 x+3+\frac{12}{x^{2}}\right) \mathrm{d} x=x^{2}+3 x-\frac{12}{x}$	A1	1.1b
	$\left((2 \sqrt{2})^{2}+3(2 \sqrt{2})-\frac{12(\sqrt{2})}{2 \times 2}\right)-(-8)$	M1	1.1b
	$=16+3 \sqrt{2}$ *	A1*	1.1 b
(5 marks)			
B1: Correc M1: Allow A1: Corre M1: Subs A1*: Com	function with numerical powers Notes for raising power by one. $x^{n} \rightarrow x^{n+1}$ three terms tutes limits and rationalises denominator lerrect, no errors seen.		

Q6.

Question	Scheme	Marks	AOs
(a)	$x^{n} \rightarrow x^{n+1}$	M1	1.1b
	$\int\left(\frac{4}{x^{3}}+k x\right) \mathrm{d} x=-\frac{2}{x^{2}}+\frac{1}{2} k x^{2}+c$	$\begin{aligned} & \text { A1 } \\ & \text { A1 } \end{aligned}$	$\begin{aligned} & 1.1 \mathrm{~b} \\ & 1.1 \mathrm{~b} \end{aligned}$
		(3)	
(b)	$\left[-\frac{2}{x^{2}}+\frac{1}{2} k x^{2}\right]_{0.5}^{2}=\left(-\frac{2}{2^{2}}+\frac{1}{2} k \times 4\right)-\left(-\frac{2}{(0.5)^{2}}+\frac{1}{2} k \times(0.5)^{2}\right)=8$	M1	1.1b
	$7.5+\frac{15}{8} k=8 \Rightarrow k=\ldots$	dM1	1.1b
	$k=\frac{4}{15}$ oe	A1	1.1b
		(3)	
(6 marks)			

Notes

Mark parts (a) and (b) as one
(a)

M1: For $x^{n} \rightarrow x^{n+1}$ for either x^{-3} or x^{1}. This can be implied by the sight of either x^{-2} or x^{2}. Condone "unprocessed" values here. Eg. x^{-3+1} and x^{1+1}
A1: Either term correct (un simplified).

$$
\text { Accept } 4 \times \frac{x^{-2}}{-2} \text { or } k \frac{x^{2}}{2} \text { with the indices processed. }
$$

A1: Correct (and simplified) with $+c$.
Ignore spurious notation e.g. answer appearing with an \int sign or with $\mathrm{d} x$ on the end.

$$
\text { Accept }-\frac{2}{x^{2}}+\frac{1}{2} k x^{2}+c \text { or exact simplified equivalent such as }-2 x^{-2}+k \frac{x^{2}}{2}+c
$$

(b)

M1: For substituting both limits into their $-\frac{2}{x^{2}}+\frac{1}{2} k x^{2}$, subtracting either way around and setting equal to 8 . Allow this when using a changed function. (so the M in part (a) may not have been awarded). Condone missing brackets. Take care here as substituting 2 into the original function gives the same result as the integrated function so you will have to consider both limits.
dM1: For solving a linear equation in k. It is dependent upon the previous M only
Don't be too concerned by the mechanics here. Allow for a linear equation in k leading to $k=$
A1: $k=\frac{4}{15}$ or exact equivalent. Allow for $\frac{m}{n}$ where m and n are integers and $\frac{m}{n}=\frac{4}{15}$
Condone the recurring decimal 0.26 but not 0.266 or 0.267
Please remember to isw after a correct answer

